Section 1.5

Definition: A limit in which a function $f(x)$ increases or decreases without bound as x approaches c is called an infinite limit.

1) For the following functions, find the real number c that is not in the domain of the function. Then graph the function on your calculator and find the limits as x approaches c from the left and from the right.
a) $f(x)=\frac{5}{x-2}$
b) $g(x)=\frac{x}{(5-x)^{2}}$

Definition: If $f(x)$ approaches infinity (or negative infinity) as x approaches c from the right or the left, then the line $x=c$ is a vertical asymptote of the graph.
2) Determine all the vertical asymptotes of the graph of each function.
a) $f(x)=\frac{5}{3 x-5}$
b) $g(x)=\frac{2 x-1}{8 x^{2}-18 x+4}$
c) $h(x)=\csc x$
3) Determine all vertical asymptotes of the graph of $f(x)=\frac{3 x+2}{6 x^{2}-17 x-14}$.
4) Determine the following limits.
a) $\lim _{x \rightarrow-1^{+}} \frac{3 x^{2}+1}{\tan \left(\frac{\pi}{2} x\right)}$
b) $\lim _{x \rightarrow 0^{-}} 10 \csc ^{2} x$

